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Periodic motion of a plunging airfoil causes continuous changes in the surrounding flow field.
The time-dependent thrust coefficient depends entirely on unsteady characteristics of the
flow field. On the contrary, the time-dependent thrust coefficient may also reflect the un-
steady characteristics of the corresponding flow field. With the fast Fourier transform (FFT)
and dynamic mode decomposition (DMD), unsteady aerodynamic forces can be correlated
with the flow field characteristics in the frequency domain. In the present paper, DMD
is performed to analyze the unsteady characteristics of the flow field around a plunging
NACA0012 airfoil at the Reynolds number of 20 000.
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1. Introduction

Flapping-wing aerodynamics has attracted many researchers’ interest in the recent decades due
to its unique unsteady characteristics. The fact that the oscillating airfoil produces thrust was
first discovered in (Knoller, 1909; Betz, 1912) and then verified by experiments (Katzmayr,
1922). The flow characteristics of a plunging airfoil are analyzed and the corresponding wakes
are classified into three categories: drag-producing wake, neutral wake and thrust-producing
wake (Jones et al., 1998), respectively. When the airfoil is in non-sinusoidal plunging motions
(Srikumar et al., 2018), the effects of motions on the thrust performance are investigated under
various unsteady parameters. The velocity profiles in the wake of a plunging airfoil were discussed
in (Davari, 2017).

The transition of a flow over an oscillating airfoil from periodicity to chaos has aroused
widespread research interest. When the reduced frequency and Strouhal number are low, pe-
riodic and asymmetric wakes can be clearly observed. As the reduced frequency and Strouhal
number increase, some asymmetric and aperiodic phenomena may appear in the wake of a two-
-dimensional (2D) heaving airfoil (Lewin and Haj-Hariri, 2003). And it is found that the wake
pattern depends primarily on the evolution of the leading-edge vortex. By increasing the oscilla-
tion amplitude, a chaotic flow is observed (Blondeaux et al., 2005). It should be noted that the
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quasi-periodic regime exhibits transient unstable characteristics and may also result in chaotic
dynamics. Visbal (2009) found through numerical simulation that the chaotic flow generated in
2D cases did not exist in three-dimensional (3D) cases. The argument that asymmetric wake
was suppressed by the 3D effects was experimentally supported by Calderon et al. (2014), be-
cause the tip vortex created in 3D cases could prevent vortex coupling. Interacting vortices can
cause the thrust coefficients to be different in two different plunging cycles (Ashraf et al., 2012).
When the plunging amplitude is large, the flow will transit from periodicity to quasi-periodicity,
or even chaos at last. The result shows that the chaotic flow is not an artifact of the 2D flow
field assumption. In 3D cases, the leading-edge vortices are stable and coherent when the plung-
ing frequency is low but the plunging amplitude is large, and they begin to break down into
small vortex structures when the plunging frequency becomes higher and the plunging ampli-
tude becomes smaller. Therefore, in the 2D flow field behind the NACA0012 airfoil undergoing a
coupled pitching and plunging motion, the vortex interaction plays an important role in chaotic
transition and the chaotic wake (Bose and Sarkar, 2018). As the plunging amplitude gradually
increases, the flow field undergoes transition from periodicity to chaos through a quasi-periodic
route. The leading-edge flow separation may give a rise to an aperiodic wake. Several fundamen-
tal vortex interaction mechanisms take place in the periodic or quasi-periodic flow. And these
interactions become completely erratic in the chaotic flow. At a higher reduced frequency and
a larger plunging amplitude, the flow of the airfoil undergoing non-sinusoidal plunging motion
was found to be aperiodic by Srikumar et al. (2018). Meanwhile, many different tools are also
used to study chaotic features by analyzing the time-dependent lift and thrust coefficients, such
as Fourier spectra and phase maps (Khalid et al., 2018).

Dynamic mode decomposition (DMD) was first proposed by Schmid and Sesterhenn (2008)
on an academic conference, which provide a convenient tool for extracting flow information
to describe flow characteristics (Schmid et al., 2009). DMD is a pure data-driven algorithm
that does not require governing equations (Taira et al., 2017), which has been used to extract
dynamic information from flow field generated by numerical simulation or measured by physical
experiments (Schmid, 2010).

Development of the DMD method based on model reduction algorithms, such as the opti-
mized DMD (Chen et al., 2012) and sparsity-promoting DMD (Jovanović et al., 2014) has also
raised considerable concern. A great deal of research has been done to improve the computational
efficiency. For example, a fast method to perform DMD in real time on large data sets (Hemati
et al., 2014), a method to perform DMD in parallel (Belson et al., 2014), and a tensor-based
DMD method requiring fewer memory resources have been successively proposed (Klus et al.,
2018). And the recursive dynamic mode decomposition method was presented by Noack et al.
(2016).

Chen et al. (2012) concluded that the data should be neither periodic nor from a linear
process for DMD to construct a meaningful modal decomposition. Therefore, DMD is suitable
for analyzing chaotic flows. The performance of DMD was investigated by Noack et al. in an
aperiodic flow behind three rotating cylinders (Noack et al., 2016). As the flow is aperiodic,
the amplitudes and spatial patterns of DMD modes extracted from a one-cycle flow field are
quite different from those from a two-cycle flow field at the same temporal frequencies (Yu et
al., 2018). The aperiodic flow results in incomplete flow information from a single oscillation
cycle. More dynamically important DMD modes can be extracted from the three-cycle flow
information. More energetic DMD modes with lower frequencies can be extracted when more
flow information is available. Based on these results, DMD can be used to investigate chaotic
flows over a plunging airfoil.

The present work aims at examining the effects of the plunging amplitude on the flow field
at a given reduced frequency and Reynolds number. The DMD method is used to analyze
the flow transition from periodicity to chaos through a quasi-periodic route as the plunging
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amplitude gradually increases. The study cases are described and verified in Section 2.1, and
DMD methodology is explicated in Section 2.2. The results of modal analysis from one-cycle
information are discussed in Section 3.1, the aperiodic behaviors are analyzed in Section 3.2, and
the effects of the plunging amplitude on stability are examined in Section 3.3 with conclusions
being drawn in Section 4.

2. Study cases and methodology

A NACA0012 airfoil with chord length of c = 0.1m is selected for numerical simulation, where
the Reynolds number Re is 20 000, the flow is set to water, and U∞ is 0.201m/s.

2.1. Numerical schemes

The unsteady flow field around the plunging airfoil is numerically simulated by the com-
mercial computational fluid dynamics package Fluent. Ashraf et al. (2012) proved that the
results of NS laminar equations and the Spalart-Allmaras turbulent model are identical and in
good agreement with the experimental data. Therefore, the viscous flow is set as laminar. The
second-order scheme is used for spatial discretization, and the transient formula is set as second-
-order implicit. Results are obtained on a structured O-mesh with the first cell height of 0.02mm
to ensure that y+ is less than 1.0. The computational mesh size is 299 × 101 (airfoil surface×
normal airfoil) as shown in Fig. 1.

Fig. 1. Mesh around the airfoil

The sinusoidal plunging motion of the airfoil is specified as follows

y = h0 sin(2πft) (2.1)

where y is the position of the plunging airfoil, h0 is the plunging amplitude and f is the plunging
frequency. The reduced frequency k = 2πfc/U∞ is set to a fixed value of 1.0, and f = 0.3199.
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The mesh independence study is carried out at a nondimensional plunging amplitude of
h = h0/c = 0.50 with three mesh sizes: (a) 99× 101, (b) 199× 101, and (c) 299× 101. It makes
no difference if points in the normal direction are doubled (Ashraf et al., 2012). For each of these
cases, 800 time steps are selected in a cycle. It is observed that the mesh with a size of 299×101
is sufficiently refined and the thrust coefficient is mesh independent, as shown in Fig. 2a. Based
on such results, the mesh size of 299× 101 is selected for the following simulation.

Fig. 2. Time-dependent thrust coefficient at h = 0.50: (a) different mesh resolutions,
(b) different time steps

As shown in Fig. 2b, the simulation is carried out in which three different time steps of 400,
800 and 1600 are selected for time steps refinement. For 1600 time steps per cycle, there is a
slight difference between the two minimum values of the time-dependent thrust coefficient. At
the same time, the minimum value of time-dependent thrust coefficient decreases as the time
steps increase from 400 to 800. Therefore, the mesh size of 299 × 101 and 800 time steps per
cycle are adopted for all subsequent simulations in the present work.

The values of the non-dimensional plunging amplitude selected for the present work are
h = 0.25, 0.50, 1.00, 1.25, and 1.50. Figure 3 shows the effects of the plunging amplitude on the
time-averaged thrust coefficient. In each case, 10 plunging cycles are run, and the corresponding
mean value is calculated from the last 4 plunging cycles based on the research explored by
Srikumar et al. (2018), with the results being compared to the reference ones from the numerical
simulations by Ashraf et al. (2012) and Srikumar et al. (2018). In Fig. 3, 7-10T denotes the time-
-averaged thrust coefficient from the last 4 plunging cycles, and 9T stands for the time-averaged
thrust coefficient from the 9th plunging cycle. Aperiodic behavior was discovered by Ashraf
et al. (Ashraf et al., 2012). It can be seen that the time-dependent thrust coefficient varies
from one cycle to the next one when kh is large enough resulting in a different time-averaged
thrust coefficient calculated from each cycle. Therefore, the time-averaged thrust coefficient from
the 9th cycle is calculated to prove the aperiodic behavior. The numerical time-averaged thrust
coefficients from the last 4 plunging cycles are in good agreement with the reference values. Some
discrepancy occurs between the single 9T data and the reference data, which will be explained
in depth below. However, the variation trend of 9T is consistent with that of the reference
data.
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Fig. 3. Variation of CT mean with h

2.2. Dynamic mode decomposition

The DMD method introduced by Schmid et al. (2009) is adopted to analyze a series of
“snapshots” of the flow past the airfoil. Parameters such as the sampling frequency are presented
in Section 3. These snapshots vi can be arranged in a matrix V

N

1 and two lagged matrices

VN1 = {v1, v2, v3, . . . , vN}

VN−11 = {v1, v2, v3, . . . , vN−1}

VN2 = {v2, v3, . . . , vN}

(2.2)

A linear mapping A is assumed, which propagates the flow field from a one instant time step
to the next

vi = Avi+1 (2.3)

So the relation between VN−11 and VN2 is defined as follows

AVN−11 = VN2 (2.4)

The last snapshot can be expressed as a linear combination of the previous ones

vn = a1v1 + a2v2 + · · ·+ aN−1vN−1 + r (2.5)

where r denotes the residual. Based on Eq. (2.4), the matrices VN−11 and VN2 are related as
follows

AVN−11 = VN2 = V
N−1
1 S+ reTN−1 (2.6)

To compute the matrix S, the singular value decomposition (SVD) is to be performed

SVD(VN−11 ) = UΣV T VN2 = UΣV
TS (2.7)

Finally, the matrix S̃, an approximation of A, is expressed by

S̃ = UTVN2 VΣ
−1 S̃yi = µiyi Φi = Uyi (2.8)
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where µi and yi represent the eigenvalue and eigenvector of S̃, respectively, and Φ contains the
DMD modes

λ =
log µ

∆t
(2.9)

where ∆t is the time interval between adjacent snapshots.

The growth/decay rates and frequencies of the DMD modes can be obtained by calculating
the real and imaginary parts of λ. So the real part of λ (ℜ(λ)) can be used to analyze the stability
characteristics of the modes. Positive values for the real part of λ denote that the modes are
growing, whereas the negative values for the real part of λ denote that the modes are decaying.
The larger absolute value of ℜ(λ), the faster the spatial patterns grow or decay. For a specific
mode, if the real part of λ is zero, it indicates that this mode is neutrally stable; and if the
imaginary part of λ is zero, it indicates that this mode denotes the mean flow with the zero
frequency. Since the eigenvalues usually appear as complex conjugate pairs, there exist conjugate
modes with the same real part but the opposite imaginary part of λ. The modes with a negative
imaginary part of λ are neglected herein, that is the modes discussed herein have non-negative
frequencies (non-negative imaginary part).

3. Results and discussion

The analysis herein is based on the vorticity data from numerical simulations validated in Sec-
tion 2.1. As the number of sampling periods increases, the results of DMD analysis become
complicated. Due to aperiodic characteristics, the flow information from a single plunging cycle
is incomplete, and new DMD modes can be extracted from the two-cycle flow information (Yu
et al., 2018). Therefore, the work herein presents the results from one cycle, two cycles and four
cycles, respectively.

3.1. Connection between the thrust and modes

The phenomena resulting from a change in the plunging amplitude are analyzed with data
from the 9th plunging cycle. First, the thrust coefficient varying with time at h = 0.25, 1.25
and 1.50 is shown in Fig. 4. At h = 0.25, the sinusoidal time-dependent thrust coefficient is
presented. When the plunging amplitude increases from h = 0.25 to h = 1.25, the sinusoidal
time-dependent thrust coefficient varies irregularly with time, and this variation becomes highly
irregular at h = 1.50. The time-averaged thrust coefficient increases with the increasing non-
dimensional plunging amplitude within a certain range, as shown in Fig. 3, and meanwhile, the
time-dependent thrust coefficient curve with time becomes irregular as h increases. This is due
to the effects of the plunging amplitude on flow structures. The flow and DMD modes extracted
from the flow will be explained later.

The thrust coefficient from the 9th plunging cycle is selected for FFT (fast Fourier trans-
form) analysis, and DMD analysis is performed based on the corresponding vorticity data. The
frequency spectrum of the thrust coefficient and the distribution of the amplitude and ℜ(λ)
with their corresponding frequency from different DMD modes are shown in Fig. 5. The spatial
patterns (real parts) for modes of kw ≈ 0, 1, 2 are displayed in Fig. 6. kw = 2πftc/U∞ = ωc/U∞
represents the frequency, ft denotes the frequency derived by FFT, and ω is the imaginary part
of λ. Based on this, the frequencies derived respectively from FFT and DMD are unified. From
the spectrum of the thrust coefficient, the frequency component of kw = 1 does not contribute
much to the thrust coefficient due to the small amplitude at h = 0.25 and 1.25. However, com-
pared with DMD modes of kw ≈ 0 and 2, the amplitude of the corresponding DMD mode of
kw ≈ 1 is not small, which explains that the corresponding DMD mode of kw ≈ 1 is important
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Fig. 4. Time-dependent thrust coefficient from the 9th plunging cycle at h = 0.25, 1.25 and 1.50

to flow structures and has no effect on the thrust coefficient. When the plunging amplitude in-
creases to h = 1.50, the amplitude of the FFT component of kw = 1 is equal to the mean thrust
coefficient, so the DMD mode of kw ≈ 1 is important for producing the thrust. As shown in
Fig. 6, the spatial patterns for the DMD mode of kw ≈ 1 are approximate at h = 1.25 and 1.50,
while these two modes contribute differently to the thrust. With DMD, the spatial patterns that
have important influence on the thrust performance can be extracted from the corresponding
flow field.

Fig. 5. FFT of the thrust coefficient (left), distribution of the amplitude (middle) and ℜ(λ) (right) of
DMD modes with their corresponding frequency: (a) h = 0.25, (b) h = 1.25, (c) h = 1.50
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Fig. 6. Spatial patterns (real part) for DMD modes of kw ≈ 0 (left), 1 (middle), and 2 (right):
(a) h = 0.25, (b) h = 1.25, (c) h = 1.50

As mentioned earlier, the ℜ(λ) of DMD modes provide information about the stability of
the corresponding flow structure. The first 11 dominant ℜ(λ) are shown in Fig. 5. At h = 0.25,
these DMD modes are neutrally stable; because the associated ℜ(λ) is close to the neutral line
(ℜ(λ) = 0). These modes are neither growing nor decaying but just kept unchanged, which
explains to some extent why the corresponding thrust coefficient presents cosinusoidal features.
When the plunging amplitude increases to h = 1.25 and 1.50, the ℜ(λ) moves away from the
neutral line. As shown in Fig. 4, since the DMD modes are either growing or decaying, the
associated thrust coefficient shows a certain twist.

Several important modes (kw ≈ 0, 1, and 2) extracted from the vorticity field are shown
in Fig. 6. DMD captures coherent structures with the same frequency (Yu et al., 2018). So the
disordered vortex structures are transformed into simple coherent structures. The flow structures
in Fig. 6a show a long vortex region over the airfoil at h = 0.25. At h = 1.25 and 1.50, the spatial
patterns are similar and the leading-edge vortex structures and the long wake are clearly shown
in Fig. 6b and 6c. But the growth/decay rates of the two similar DMD stationary modes are
opposite. At h = 1.25, the associated DMD stationary mode is growing, while at h = 1.50,
the stationary mode is decaying. This phenomenon provides a scope for explaining why the
corresponding time-averaged thrust coefficient decreases when h increases from 1.25 to 1.50.

3.2. Aperiodic behavior

DMD is used to analyze the chaotic flow field, where the data is selected from two different
plunging cycles (9th and 10th plunging cycles). Figure 7 compares the time-dependent thrust
coefficient of two plunging cycles for cases where h = 0.50, 1.00, and 1.25 at k = 1.0. At h = 0.50,
the time-dependent thrust coefficient is periodic. An aperiodic feature appears at h = 1.00, and
the chaotic feature is prominent at h = 1.25. That is why the mean thrust coefficients of 9T and
7-10T are different at large plunge amplitudes.

Chen et al. (2012) found that the data used for DMD did not need to be periodic. And
Noack et al. (2016) adopted the performance of DMD to investigate a aperiodic flow behind
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Fig. 7. Time-dependent thrust coefficient of 9T and 10T: (a) h = 0.50, (b) h = 1.00, (c) h = 1.25

Fig. 8. FFT of the thrust coefficient (left), distribution of the amplitude (middle) and ℜ(λ) (right) of
DMD modes with their corresponding frequency: (a) h = 0.50, (b) h = 1.00, (c) h = 1.25

three rotating cylinders. Therefore, DMD is performed to analyze the aperiodic behavior of flow
fields in this Section.

The spectral content of the time-dependent thrust coefficient and DMD modes extracted
from the two-cycle vorticity field data are shown in Fig. 8. For the spectral content of the time-
-dependent thrust coefficient, more components with a lower frequency may be extracted, and
the resolution ratio may double. The minimum frequency interval decreases from 1.0 (plunging
frequency) to 0.5 for kw when the sampling time increases from one cycle to two cycles. But new
findings can be observed from the distribution of DMD modes. When h is 0.50 and the flow is
periodic, the new DMD modes with close frequencies (e.g., kw ≈ 0) or middle frequencies (e.g.,
kw ≈ 0.5) are extracted from the two-cycle flow information. These modes have either very small
amplitudes or large amplitudes with large decay rates. The results show that these new DMD
modes have little impact on the flow. Although the amplitudes of new DMD modes are large,
the oscillating spatial patterns extracted from the flow fields decay rapidly. The influence of the
corresponding spatial patterns on the flow severely weakens over time. Therefore, the dominant
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DMD modes are still prominent in such a case. Since the non-dimensional plunging amplitude
h is 0.5, the frequency components of kw ≈ 0.0, 2.0 and 4.0 greatly contribute to the thrust
coefficient. With DMD, the corresponding spatial patterns that have important influence on the
flow and thrust performance can be extracted from the flow field. As h increases to 1.00 and
the flow becomes quasi-periodic, it is hard to identify which modes are dominant because there
are two modes with a similar frequency and growth/decay rates. The frequency components
of spatial patterns are close to each other, and the corresponding spatial patterns show a slow
decay trend. Therefore, the new DMD modes extracted from the quasi-periodic flow are of equal
importance to the flow. When h is 1.25 and the flow is chaotic, the new DMD modes with
middle frequencies (e.g., kw ≈ 0.5 and 1.5) are extracted, such as the spectral content of the
thrust coefficient, which cannot be overlooked due to its large amplitude and the low decay
rate. The spatial patterns corresponding to the middle frequencies first appear as dominant flow
structures.

The distribution of DMD modes may reflect the flow characteristics of the plunging airfoil.
Based on DMD, the new information extracted from the periodic flow shows a weak effect on
the flow. Similar information can be extracted from the quasi-aperiodic flow and new dominant
information may also be extracted from the chaotic flow. More information extracted by DMD
can help us to better understand the aperiodic features. The flow structures formed in the
current cycle may affect the evolution of flow structures in the next cycle. Long-term vortex-
-vortex interactions may cause the chaotic flow when the non-dimensional plunging amplitude
is large. The two-cycle flow field is analyzed by DMD. And the vortex-vortex interactions are
represented by DMD modes. In the periodic flow, the interactions are weak, indicating that the
new DMD modes are not dominant. However, the interactions are strong in the chaotic flow,
and the extracted new DMD modes contribute substantially to the flow. These important new
DMD modes can indirectly prove the existence of chaotic characteristics.

3.3. Plunging amplitude effects on stability

In the previous Section, only the DMD modes with kw ¬ 10 are discussed. Therefore, the
stability characteristics of all DMD modes extracted from the four-cycle (starting from 7T)
vorticity field data will be discussed here, except for the modes with negative frequencies. The
number of growth and decay modes is shown in Table 1. It can be observed that the number
of decay modes is far greater than that of the growth modes, so most of the spatial patterns
extracted by DMD are in the damped oscillation state. When h increases from 0.25 to 1.00, the
number of decay modes gradually increases. Therefore, the vortex structures will become more
complex, but the damped oscillation will not be suppressed as h increases. When h increases
from 1.00 to 1.50, the number of decay modes is stable and the number of damped oscillations
spatial patterns does not vary markedly.

Table 1. Number of growth and decay modes at h = 0.25, 0.50, 1.00, 1.25, and 1.50

h = 0.25 h = 0.50 h = 1.00 h = 1.25 h = 1.50

ℜ(λ) < 0 (decay modes) 101 108 127 119 120

ℜ(λ) > 0 (growth modes) 63 55 35 41 42

The ℜ(λ) distribution of DMD modes with corresponding frequencies are shown in Fig. 9. In
the figure, the range of ℜ(λ) is fixed. So the DMD modes with ℜ(λ) < −2 or ℜ(λ) > 1 are not
shown in this figure. The corresponding solid lines with the same color are linear regression lines
at each h. The corresponding linear regression lines are used to describe the ℜ(λ) distribution
of DMD modes with the frequency.
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Fig. 9. Stability of all DMD modes for h = 0.25, 0.50, 1.00, 1.25 and 1.50 cases

The spectrum (kw,ℜ(λ)) of DMD modes seems random, but the law of variability of ℜ(λ)
with the frequency is clearly shown for each case. When h is 0.25, 0.50 and 1.00, the corresponding
slope of the linear regression line is negative. Therefore, the ℜ(λ) will decrease as the frequency
increases. The higher the frequency, the faster the damped oscillation spatial patterns decay.
When h increases from 0.25 to 1.00, the corresponding slope of the linear regression line decreases.
This means that the damped oscillation spatial patters decay faster at the same frequency when
h is higher.

However, when h increases from 1.00 to 1.50, the corresponding slope of the linear regression
line is increased. At h = 1.50, the corresponding slope of the linear regression line is positive.
Therefore, the ℜ(λ) will increase as the frequency increases. At a lower frequency, the spatial
patterns extracted by DMD are decaying. At a higher frequency, the spatial patterns are growing.

For the case of h = 1.25, the frequency has little effect on ℜ(λ), and the corresponding linear
regression line is closest to the neutral line (ℜ(λ) = 0). When the frequencies are lower or higher,
the ℜ(λ) is close to zero. Therefore, the corresponding spatial patterns change slowly.

Meanwhile, the distribution of discrete points around the corresponding line is quantified by
defining the Error between the discrete points and the line. The Error is defined as

Error =
n∑

i=1

|yi − (axi + b)|

n
(3.1)

where at each h, a and b denote the slope and y-intercept of the linear regression line, respectively;
xi and yi denote the frequency kw and ℜ(λ) of DMD modes, respectively. When the value of
Error is small, these discrete points are close to the corresponding linear regression line. When
the value of Error is large, these discrete points are far away from the corresponding linear
regression line. The corresponding results of Error are shown in Table 2. As h increases to 1.00,
the value of Error is increasing and the discrete points gradually move far away from the
corresponding linear regression line. At h = 1.25, the Error is minimal, and the discrete points
are along the sides of the corresponding linear regression line, which is closest to the neutral
line as mentioned earlier. So most points are distributed close to the neutral line. Most of the
spatial patterns extracted by DMD are maintained due to their low growth/decay rates. At the
same time, the mean thrust coefficient for the five cases is maximal. Therefore, it is proposed
that the neutral self-stabilized flow generates the optimal thrust.
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Table 2. Results of Error at h = 0.25, 0.50, 1.00, 1.25 and 1.50

h = 0.25 h = 0.50 h = 1.00 h = 1.25 h = 1.50

Error 0.7861 0.9038 0.9237 0.2284 0.4270

4. Conclusions

DMD is used to investigate the process of flow transition from periodicity to chaos through a
quasi-periodic route as the plunging amplitude gradually increases. The chaotic transition of
the flow over a plunging NACA0012 airfoil is caused by the increasing plunging amplitude. The
effects of the plunging amplitude on chaotic transition and stability are systematically discussed
herein at a reduced frequency of 1.0 with a Reynolds number of 20 000. At the same time, the
distribution of DMD modes extracted from one-cycle information and the spectral content of the
corresponding thrust coefficient are presented. It is observed that the modes with frequencies of
kw ≈ 0 and 2 have an important influence on the thrust performance. The thrust is related to
the reduced modes in the frequency domain. The large growth/decay rates of DMD modes result
in transition of the time-dependent thrust from smoothness to tortuosity. Periodic and aperiodic
flows are distinguished by decay/growth rates extracted with DMD. When the sampled data
comes from two cycles, the dominant modes extracted from the periodic flow are prominent
and similar modes extracted from the quasi-periodic flow also appear. And meanwhile, new
DMD modes with lower frequencies are extracted from the chaotic flow. The differences between
the distribution of DMD modes extracted from periodic, quasi-periodic and chaotic flows are
identified. A method to distinguish quasi-periodic and chaotic flows from flows over the plunging
airfoil is provided. The last four cycles of flow data are used to analyze the flow stability by
DMD. The distribution laws of the DMD spectrum are explored by the linear regression line and
Error analysis. At a small plunging amplitude, ℜ(λ) decreases with the increasing frequency.
But at a large plunging amplitude, ℜ(λ) increases with the increasing frequency. The variation
trend of ℜ(λ) will change as the plunging amplitude increases. At h = 1.25, the ℜ(λ) is close to
the neutral line, and the time-averaged thrust coefficient for five cases is the largest. It is inferred
from the analysis that the neutral self-stabilized flow generates the optimal thrust performance.
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